The criticality for which uninterruptible iBeLink Miners power supplies (UPS) were created means that their reliability requires some form of measure to give customers a means of comparing different manufacturers and UPS. The purpose being to shield the loads the UPS is protecting from vulnerability, therefore, reliability should not be guessed at.
MTBF or Mean Time Between Failure is one such measure – an indicator of the reliability of an uninterruptible power supply. It is the average operational time between powering up and system shutdown due to failure (not power failure in this sense but failure of the UPS system itself). It is represented by a measurement of hours.
Average failure rate is another measure of reliability. This is the total number of failures in a given time period. The failure rate over the lifetime of any UPS system, therefore, is inversely proportionate to its MTBF.
Uninterruptible power supplies are no different to any other electronic equipment in that the rate at which they fail is not constant. There are three distinct periods associated with UPS failure (which are often represented by a bathtub curve diagram showing a) infant mortality failures, b) random failures and c) wear out failures).
Infant mortality failures correspond to failures early on the life of the uninterruptible power supply. IT-sized uninterruptible power supplies can suffer what is termed ‘dead-on-arrival’. This could be due to a component manufacturing defect or transportation damage. A sudden shock or jolt in transportation may weaken a soldered joint, for example.
Whilst UPS manufacturers strive to reduce these incidents as much as possible through stringent quality checks and testing processes, they do happen. Various processes can be applied to minimise the chances of it happening. UPS from 10kVA, for example, can be run for short burn-in periods (up to 48 hours) at high ambient temperature to reduce the potential for such failures